

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

SEMESTER – I

S. No.	Course	Course Name	Category	Hour	s per	week	Credi
	codes			L	T	P	ts
1.	21D49101	Advanced Power System Protection	PC	3	0	0	3
2.	21D49102	Power System Security and State Estimation	PC	3	0	0	3
3.		Program Elective I: Energy Auditing and Management Modelling and Analysis of HVDC Systems Power System Optimization	PE	3	0	0	3
4.	21D49104a 21D49104b 21D49104c	Program Elective II: Solar & Wind Energy Conversion Systems Smart Grid Technologies Electric Vehicle Engineering	PE	3	0	0	3
5.	21D49105	Machines & Power Systems Lab	PC	0	0	4	2
6.	21D49106	Power Systems Simulation Lab	PC	0	0	4	2
7.	21DRM101	Research Methodology and IPR	MC	2	0	0	2
8.	21DAC101b	Audit Course – I English for Research paper writing Disaster Management Sanskrit for Technical Knowledge	AC	2	0	0	0
		Total					18

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

SEMESTER - II

S.No.	Course	Course Name	Category	Hour	Hours per week		Credit
	codes			L	T	P	S
1.	21D49201	Power System Stability and Control	PC	3	0	0	3
2.	21D49202	FACTS Controllers	PC	3	0	0	3
3.	21D49203a 21D49203b 21D49203c	Program Elective III Power System Wide Area Monitoring & Control Modern Control Theory Reactive power Compensation & Management	PE	3	0	0	3
4.	21D49204a 21D49204b 21D49204c	Program Elective IV Power Quality Distributed Generation and Micro grid Control EHVAC Transmission systems	PE	3	0	0	3
5.	21D49205	Renewable Energy Sources Lab	PC	0	0	4	2
6.	21D49206	FACTS Devices Simulation Lab	PC	0	0	4	2
7.	21D49207	Technical seminar	PR	0	0	4	2
8.	21DAC201a 21DAC201b 21DAC201c	C C;	AC	2	0	0	0
	-	Total					18

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

SEMSTER - III

S.No.	Course codes	Course Name	Categor	Hours per week		eek	Credits
			y	L	T	P	
1.		Program Elective V: Restructured power systems Reliability Engineering and Applications to Power Systems Power System Automation	PE	3	0	0	3
2.	21DOE301e 21DOE301a 21DOE301i	Open Elective: Waste to Energy Cost Management of Engineering Projects IOT Applications	OE	3	0	0	3
3.	21D49302	Dissertation Phase – I	PR	0	0	20	10
4.	21D49303	Co-curricular Activities		·			2
		Total		<u> </u>			18

SEMESTER - IV

S.No.	Course codes	Course Name	Category	Hours	Hours per week		Credits
				L	T	P	
1.	21D49401	Dissertation Phase – II	PR	0	0	32	16
		Total					16

Textbooks:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED POWER SYSTEM PROTECTION	L	T	P	C
21D49101		3	0	0	3
	Semester	I			
Course Objecti	ves: To make the student				
 To knov 	construction of static relays				
 To unde 	rstand the operation of amplitude and phase comparators				
 To comp 	brehend the concepts of Static over current, static differential and static	dista	nce rela	ys.	
 To unde 	rstand multi-input comparators and concept of power swings on the dis	stance	relays.		
 To know 	the operation of microprocessor based protective relays				
Course Outcom	es (CO):Student will be able to				
 Describe 	the construction of static relay and identify the advantages of static	relay	over el	ectrom	agneti
	alyse the importance of reliability in various fields.				
 Explore 	the operation of rectifier bridge comparators, instantaneous compa	arators	s, phase	comp	arators
	out comparators, static differential and distance relays				
	instantaneous, definite time and inverse definite minimum time over				
 Analyze 	the concept of power swings on distance relays and to identify	the 1	nicropr	ocessor	based
	re relays and their operation				
UNIT – I	STATIC RELAYS & COMPARATORS	Lect	ure Hrs	: 8	
	asic construction of Static relays – Level detectors – Replica Impedance				
	input phase and Amplitude Comparators - their types - Duality between				
	nic section characteristics-Three input Amplitude Comparator - Hybr				
	s - Polyphase distance schemes-Phase faults scheme -Three phase	e sch	eme–C	ombine	d and
Ground fault sch					
UNIT - II	TYPES OF STATIC RELAYS		ure Hrs		
	er current relay - Time over current relays - Basic principles - Definit				
	t relays, directional over current relays - Static Differential Relays-An	•			rential
	y schemes-Dual bias transformer differential protection – Harmonic r				
UNIT - III	NUMERICAL RELAYS:		ure Hrs		
	Jumerical Relays - Numerical network-Digital Signal processing-Est				
•	lgorithm - Half Cycle Fourier Algorithm- practical considerations for	r sele	ction of	f Algor	ithm–
Discrete Fourier		,			
UNIT - IV	DISTANCE RELAYS AND POWER SWINGS		ure Hrs		
	Relays - Static Impedance - reactance - MHO and Angle Impedance re	lay sa	mpling	compar	ator –
	actance and MHO relay using a sampling comparator.				
	swings on the performance of Distance relays- Power swing analysis		nciple o	of out o	f step
tripping and blo	king relays - Effect of line length and source impedance on distance re	elays.			
UNIT - V	MICROPROCESSOR BASED PROTECTIVE RELAYS				
	ays - Impedance relays - Directional relay - Reactance relay (Blo				
approach only).			of re	sistance	e and
	Generalized mathematical expression for distance relays-Measur				
	Generalized mathematical expression for distance relays-Measur O and offset MHO relays – Realization of MHO characteristics – R Block diagram and flow chart approach only) - Basic principle of Digit	ealiza	tion of	Offset	МНО

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. T.S. Madhava Rao, Power system Protection static relay, Tata McGrawHill Publishing Company limited, 2nd Edition, 2004.
- 2. Badri Ram and D.N. Vishwakarma, Power system Protection and Switchgear, Tata McGraw Hill Publication Company limited, 2^{nd} Edition, 2013.

- 1. Bhavesh Bhalja, R. P. Maheshwari, N. G. Chothani, Protection and Switchgear, Oxford University Press, 2nd Edition, New Delhi, India, 2018.
- 2. Oza, B. A., N. C. Nair, R. P. Mehta, et al., Power System Protection & Switchgear, Tata McGraw Hill, New Delhi, 1st Edition, 2011.

M.TECH, IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

	COMMON COURSE STRUCTURE & SYLLA	DI			
Course Code	POWER SYSTEM SECURITY AND STATE	L	T	P	С
21D49102	ESTIMATION	3	0	0	3
	Semester	•		I	
Understa application	res: To make the student and the basic concepts of network matrices, power flow ons of power system state estimation and structure of deregulated about admittance/impedance matrices, factors influencing p	d power	system.		

Course Outcomes (CO): Student will be able to

management methods and electricity sector structure.

• Understand the concepts of network matrices, power flow methods, contingency analysis, state estimation, and need and conditions for deregulation.

Develop the algorithm for orthogonal matrix, method to identify network problems and congestion

- Analyze the bus admittance/impedance matrices methods, power system security, sensitivity factors, state estimation and electricity structure model.
- Apply the methods for evaluating the bus matrices, sparsity, DC power flow, AC power flow, estimating a value and Available Transfer Capability (ATC).
- Develop the methods for state estimation, method to identify network problems and methods for congestion management.

UNIT - I Power System Network Matrices Lecture Hrs: 10 Formation of bus admittance matrices by direct inspection method and singular transformation method – Algorithm for formation of Bus impedance matrix: addition of a branch and addition of a link, removal element in Bus impedance matrix − Sparsity programming and Optimal Ordering − Numerical problems − ∏-representation of off-nominal tap transformers. UNIT - II Power System Security-I Lecture Hrs: 9

Review of power flow methods (qualitative treatment only)— DC power flow method-simple problems — Introduction to power system security — Factors influencing power system security.

UNIT - III Power System Security-II Lecture Hrs: 10

Introduction to contingency analysis – Contingency analysis: Detection of Network problems, linear sensitivity factors –AC power flow methods– Contingency selection– Simple problems.

UNIT - IV State Estimation in Power System Lecture Hrs: 10

Power system state estimation – SCADA –EMS center, Methods of state estimation – Method of least squares, Orthogonal matrix–Properties– Givens rotation–Orthogonal decomposition–Bad data detection, Pseudo measurements and applications of power system state estimation – Simple problems.

UNIT - V Security in Deregulated Environment Lecture Hrs: 9

Need and conditions for deregulation—Electricity sector structure model – Power wheeling transactions – Congestion management methods—Available Transfer Capability (ATC) – System security in deregulation.

Textbooks:

- 1. Allen J. Wood and Wollenberg B.F., Power Generation Operation and control, John Wiley & Sons, 3rd edition, 2013.
- 2. P. Venkatesh, B.V. Manikandan, S. Charles Raja and A.Srinivasan, Electrical power systems analysis, security, and deregulation, PHI learning private limited, Delhi, 1st edition 2014.

Reference Books:

1. Nagrath I.J. and Kothari D.P., Modern Power System Analysis, TMH, New Delhi, 3rd Edition, 2004.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

2. John J. Grainger and William D. Stevenson, Power System Analysis, Tata McGraw-Hill, 1st edition, 2003.

Online Learning Resources:

- 1. https://nptel.ac.in/content/storage2/courses/108106022/LECTURE%205.pdf
- 2. https://nptel.ac.in/content/storage2/courses/108101040/download/Lec-26.pdf

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	ENERGYAUDITING AND MANAGEMENT	L	T	P	C
21D49103a	(PE-I)	3	0	0	3
	Semester]	I	
	ives: To make the student				
	erstand the current energy scenario and importance of energy conservation				
	uire the knowledge about different energy efficient devices				
	asure thermal efficiency and other renewable resources.				
	sign suitable energy monitoring system to analyze and optimize the	e ene	rgy		
	nption in an electrical system.				
	mes (CO): Student will be able to				
	tand the current energy scenario and importance of energy conservation				
	e the knowledge about different energy efficient devices				
	re efficiency in renewable energy resources.				
	y the equipment and areas of a system where energy conservation and Audit	is nec			
UNIT - I	Energy audit and demand side management (DSM) in power utilities		Lec 10	cture	Hrs:
of T&D Losses	o & Conservation -Demand Forecasting Techniques- Integrated Optimal St s - DSM Techniques and Methodologies- Loss Reduction in Primary and Se acitors - Energy Management — Role of Energy Managers – Energy Audit-	conda	ary D		
UNIT - II	Energy audit		Leo	cture	Hrs:
auditing in inc	oncepts - Basic elements and measurements - Mass and energy balances dustries - Evaluation of energy conserving opportunities and environment presentation of energy audit reports - case studies and potential energy sav	ental			
UNIT - III	Instrumentation		Lec 10	cture	Hrs:
of electrical sys	Instrumentation – Measuring building losses – Applications of IR thermo gratem performance – Measurement of heating, ventilation, air conditioning sufficiently for the combustion systems.				
UNIT - IV	Energy conservation		Lec	cture s:10	
	vation in HVAC systems and thermal power plants, Solar systems, Fan and sources and luminous efficiency	d Ligh			ms -
UNIT - V	Economic evaluation of energy conservation		Lec	cture s:9	
	ration in electrical devices and systems - Economic evaluation of energy cor and transformers - Inverters and UPS - Voltage stabilizers.	iserva	tion 1	neasu	res -
Textbooks:					
1. Frank kreit NewYork,20	h and D. Yogi goswamy/ Editors, "Energy Management and conse	ervatio	on h	andbo	ok".
2. WC Turner:	Energy Management Handbook, Seventh Edition, (Fairmont Press Inc., 200	-	D ID.	ngg 20	ME)
	d Shashank Jain: Handbook on Energy Audit and Environment Management	ı, (1E	KIPI	:88, 20	<i>1</i> 00)
Reference Boo	KS:				

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. Albert Thumann, and William J. Younger, "Handbook of Energy Audits", Marcel Dekker, Inc., Newyork, 6th edition, 2003.
- 2. D.A.Reay, Industrial Energy Conservation-Pergamon Press, 1980.
- 3. T.L.Boten, LiptakB.G.,(Ed)Instrument Engineers Handbook, Chinton Book Company, 2004.
- 4. Hodge B.K, Analysis and Design of Energy Systems, Prentice Hall, 2002.
- 5. Larry C.Witte, Schmidt & Brown, Industrial energy management and utilization. Hemisphere publishing, Co.NewYork,1988.

M.TECH, IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	MODELLING AND ANALYSIS OF HVDC	L	T	P	C
21D49103b	TRANSMISSION SYSTEMS (PE-I)	3	0	0	3
	Seme	ster		I	
Course Objective	s: To make the student				
Course Objective	s: To make the student				
· ·	s: To make the student and the concept, planning of DC power transmission.				
To unders					
To undersTo analyze	and the concept, planning of DC power transmission.				

- To identify the electrical requirements for HVDC lines.
- Analyze the different modes of operation for six pulse & twelve pulse converter unit in the context of HVDC system.
- Apply the knowledge of HVDC transmission in Power networks.
- Determine the appropriate HVDC transmission line parameters under different physical conditions

UNIT – I HVDC CONVERTERS AND SYSTEM CONTROL Lecture Hrs: 10

Analysis of HVDC Converters: Pulse number – choice of converter configuration – simplified analysis of Graetz circuit – converter bridge characteristics.

Converter and HVDC system control: Principles of DC link control – converter control characteristics – system control hierarchy – firing angle control – current and extinction angle control – starting and stopping of DC link power control.

po mer common.		
UNIT – II	MODELING FOR POWER FLOW ANALYSIS OF	Lecture Hrs: 9
	AC/DC SYSTEMS	

Modeling of HVDC Components: HVDC Converter model - Converter control - Modeling of DC network - Modeling of AC Network.

Power flow analysis in AC/DC systems: Modeling of DC links –Multi terminal DC links- Solution of DC load flow –per unit system for DC qualities – Solution of AC/DC power flow.

UNIT - III	TRANSIENT	AND	DYNAMIC	STABILITY	Lecture Hrs: 10
	ANALYSIS				

Transient stability Analysis – Converter model – Converter control models – DC network models – solution methodology – Direct methods for stability Evaluation.

Dynamic Stability and power modulation - Power modulation for damping low frequency oscillations - Basic principles - practical consideration in the application of power modulation controllers - Gamma or reactive power modulation - power modulation in MTDC system - voltage stability in AC/DC system.

UNIT – IV HARMONIC AND TORSIONAL INTERACTIONS Lecture Hrs: 10

Harmonic and Torsional Interactions: Harmonic Interactions - Torsion Interactions - Torsional interactions with in HVDC systems - counter measures to torsion interactions with DC systems.

Simulation of HVDC systems: System simulation – philosophy & Tools – HVDC system simulation – modeling of HVDC systems Digital dynamic simulation.

UNIT – V MODELING OF HVDC SYSTEMS Lecture Hrs: 9

Digital dynamic simulation of converters and DC systems: Valve model, Gate pulse generation – generation of control voltage – transformer model – converter model – transient simulation of DC and AC systems.

Textbooks

- 1. K.R. Padiyar, HVDC Power Transmission Systems Technology & System Interactions, New Age International Publishers, 3rd Edition, 2017
- 2. S Kamakshaiah and V Kamaraju, HVDC Transmission, Tata Mc Graw Hill, New Delhi, 2nd Edition, 2021.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. E.W. Kimbark, Direct current transmission, Wiely Inter Science New York, 1st Edition, 1971
- 2. J. Arillaga, HVDC Transmission, Peter Peregrinus Ltd., London UK 2nd Edition, 1998
- 3. E. Uhlman, Power transmission by direct current, Springer Verlag, Berlin Helberg, 1st Edition, 1985

Textbooks:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	POWER SYSTEM OPTIMIZATION	L	T	P	C
21D49103c	(PE-I)	3	0	0	3
	Semester			I	
Course Objectives	: To make the student				
Understa	nd the fundamental concepts of Optimization Techniques.				
 Analyze 	the importance of optimizations in real life scenarios.				
	e concepts of various classical and modern methods for constrained and	unc	onstr	aine	Ĺ
	s in both single and multivariable.				
	ne algorithms for different optimizations techniques				
	(CO): Student will be able to				
	nd the concept of optimality criteria for various type of optimization problem	ıs.			
	the concept of different optimization techniques in real world applications.				
	rious constrained and unconstrained problems in single variable as well as				
multivar					
	ne methods of optimization for real life situation.	ı			
UNIT – I	CONVENTIONAL OPTOMIZATION TECHNIQUES &	Le	cture	Hrs:	10
	FUNDAMENTALS OF PARTICLE SWARM OPTIMIZATION				
- O F	(PSO) TECHNIQUES				
	related to Optimization -Quadratic optimization problem - Karush - Kuh				
	icient conditions for quadratic programming problem- Interior point n	netho	od fo	or co	nv
optimization - linea					
	O – Original PSO – Variation of PSO – Discrete PSO – PSO for MINLPs – O				
	Hybrid PSO (HPSO) – L best Model – Adaptive PSO (APSO) Evolution	ary I	PSO	(EPS	O)
Applications.		ı			
UNIT – II	FUNDAMENTALS OF ANT COLONY SEARCH	Leo	cture	Hrs:	9
Ant Colony Coonal	ALGORITHMS Algorithm – Behavior of Real Ants – Ant Colony Algorithms – The Ant S	Trata	***	The	Λ 22
	The Max-Min Ant System – Major Characteristics of Ant Colony Sea				
	tation: Avoid Premature Convergence – Positive Feedback: Rapid Dis				
	Greedy Search and Constructive Heuristic Information: Find Acceptable				
Early Stage of the F		, 501	uuoi	13 111	un
UNIT - III	FUNDAMENTALS OF TABU SEARCH	Leo	cture	Hrs	12
	bu Search Approach – Problem Formulation – Coding and Representation				
	terization of the Neighborhood – Functions and Strategies in Tabu Search –		_		
	ic Tabu Search Algorithm – Candidate List Strategies – Tabu tenure – Asp				
	erm Memory in Tabu Search – Frequency-Based Memory – Intensification				
_	ies – Path Relinking – Strategic Oscillation – Applications of Tabu Search.				
UNIT – IV	APPLICATION TO POWER SYSTEMS	Lec	cture	Hrs:	9
	ver system applications – Model identifications – Dynamic load modeling				
	bution system applications – Network reconfiguration for loss reduction – C				
	es placements – Examples.	1	r		
UNIT – V	POWER SYSTEM CONTROLS	Lec	cture	Hrs:	9
	system controls: Particle Swarm Technique – Problem formulation of VVC				

- Problem formulation - Expansion of PSO for MINLP - Voltage security assessment - VVC using PSO -

Treatment of state variables – VVC algorithm using PSO – Numerical Examples – IEEE 14 Bus system.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. A Ravindran, K.M. Ragsdell, and G.V. Reklaitis, "Engineering optimization: Methods and applications", Wiley India Edition.
- 2. Kwang Y. Lee and Mohamed A. EI- Sharkawi "Modern Heuristic Optimization Techniques Theory and Applications to Power Systems", A John Wiley & Sons. INC. Publication, 1st edition, 2020
- 3. D. P. Kothari and J. S. Dhillon, "Power System Optimization", PHI Learning Private Limited, 2nd Edition, 2011.

Reference Books:

- 1. Jizhong Zhu, "Optimization of power system operation", IEEE Press, John Wiley & Sons, Inc., Publication, 2nd edition, 2015.
- 2. Joshua adam Taylor, "Convex optimization of power systems", Cambridge University Press, 1st edition, 2015.

Online Learning Resources:

https://nptel.ac.in/courses/112/106/112106064/

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

	COMMON COURSE STRUCTURE & SYLLABI				
Course	Code COLAD & WIND ENERGY CONVERSION SYSTEM (DE 11)	L	T	P	C
21D491	SOLAR & WIND ENERGY CONVERSION SYSTEM (PE-II)	3	0	0	3
	Semester	Ι		·	
Course	Objectives: To make the student				
•	To introduce photovoltaic systems and principle of wind turbines				
•	To deal with various technologies of solar PV cells				
•	To understand details about manufacture, sizing and operating techniques in solar	energ	y conv	ersio	n
	systems.				
•	Understand the concepts of fixed speed and variable speed, wind energy conversion	syst	ems.		
•	To have knowledge of design considerations and analyze grid integration issues.				
Course	Outcomes (CO): Student will be able to				
•	Understand the fundamentals of solar cell, Solar PV Modules from solar cells, sys	em t	pes, S	Standa	alone
	PV system configuration, Maximum Power Point tracking (MPPT) and fundamental	ntals	the c	oncep	ots of
	fixed speed and variable speed, wind energy conversion systems.			_	
•	Apply the concept of various technologies of solar PV cells, manufacture,	sizin	g and	oper	ating
	techniques.		-	-	
•	Analyze the concept of Effect of series and shunt resistance on efficiency, Effect	of so	lar rac	liatio	ı on

UNIT – I SOLAR & WIND FUNDAMENTALS Lecture Hrs: 10

Design of PV powered DC fan without battery, Standalone system with DC load using MPPT, PV powered DC pump, standalone system with battery and AC/DC load and control principles of Wind

efficiency, Analytical techniques, Hot spots in the module, Algorithms for MPPT and

Need for sustainable energy sources – solar radiation – the sun and earth movement – angle of sunrays on solar collectors – sun tracking – estimating solar radiation – measurement of solar radiation. Types of wind energy conversion devices – definition - solidity, tip speed ratio, power coefficient, wind turbine ratings and specifications - aerodynamics of wind rotors - design of the wind turbine rotor – Issues due to integration of solar and wind energy systems.

UNIT – II SOLAR PHOTOVOLTAIC MODULES Lecture Hrs: 9

Solar PV Modules from solar cells – model of a solar cell, effect of series and shunt resistance on efficiency, effect of solar radiation on efficiency - series and parallel connection of cells – mismatch in module – mismatch in series connection – hot spots in the module, bypass diode – mismatching in parallel diode – design and structure of PV modules – number of solar cells in a module, wattage of modules, fabrication of PV module – PV module power output.

UNIT - III PV SYSTEM DESIGN AND APPLICATIONS Lecture Hrs: 10

Introduction to solar PV systems – standalone PV system configuration – design methodology of PV systems – design of PV powered DC fan without battery, standalone system with DC load using MPPT, design of PV powered DC pump, design of standalone system with battery and AC/DC load – wire sizing in PV system – precise sizing of PV systems – Hybrid PV systems – grid connected PV systems.

UNIT – IV WIND TURBINE CONTROL SYSTEMS & SITE ANALYSIS Lecture Hrs: 10

Wind Turbine - Torque speed characteristics - Pitch angle control - stall control - power electronic control - Yaw control - Control strategy - Wind speed measurements - Wind speed statistics - Site and turbine selection. Constant voltage & constant frequency- single output system -double output system with current converter & voltage source inverter - equivalent circuits - reactive power and harmonics - reactive power compensation - variable voltage, variable frequency - the self-excitation process - circuit model for the self-excited induction generator - analysis of steady state operation - the excitation requirement - effect of a wind generator on the network .

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

TURBINES AND APPLICATIONS

Classification of schemes – operating area – induction generators – doubly fed induction generator – wound field synchronous generator – the permanent magnet generator – Merits and limitations of wind energy conversion systems – application in hybrid energy systems – diesel generator and photovoltaic systems – wind photovoltaic systems.

Textbooks:

- 1. "Solar Photovoltaics Fundamentals, Technologies and Applications" by Chetan singh solanki, PHI publications, 3rd edition, 2015
- 2. S.N.Bhadra, D.Kastha, S.Banerjee, "wind electrical systems" Oxford University Press, 1st edition, 2013
- 3. Banshi D. Shukla, "Engineering of Wind Energy", Jain Brothers, 1st edition, 2018

- 1. H.P. Garg, J. Prakash, Solar Energy Fundamentals and applications Tata McGraw- Hill publishers 1st edition, 2000
- 2. S.Rao & B.B.Parulekar, Energy Technology, Khanna publishers, 4th edition, 2005.
- 3. N.K.Bansal, M. Kleemann, Michael Meliss, Renewable Energy sources & Conversion Technology, Tata Mcgraw Hill Publishers & Co., 1st edition, 1990

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLARI

Course Cod	le SMART GRID TECHNOLOGIES	L	T	P	C
21D49104b	(PE-II)	3	0	0	3
	Semester	I			4
Course Ob	ectives: To make the student				
• T	o know the importance of smart grid technology functions over the present grid.				
• T	o get the knowledge about the measurement system and communication technologies	ology	of Sm	art gr	id.
• T	o enhance the quality, efficiency and security of power supply.				
• T	o impart an understanding of economics, policies and technical regulations for D	G int	egratio	n.	
Course Out	comes (CO): Student will be able to		J		
	nderstand the importance of smart grid technology functions over the present gri	Ы			

- Understand the importance of smart grid technology functions over the present grid.
- Apply the knowledge about the measurement system and communication technology of
- Determine the quality, efficiency and security of power supply.
- Impart an understanding of economics, policies and technical regulations for DG integration.

UNIT – I **SMART GRIDS** Lecture Hrs: 10 Smart grid overview- ageing assets and lack of circuit capacity- thermal constraints, operational constraints, security of supply- national initiatives- early smart grid initiatives- active distribution networks- virtual power plant- other initiatives and demonstrations- overview of the technologies required for the smart grid.

TRANSMISSION AND DISTRIBUTION MANAGEMENT Lecture Hrs: 10 Data Sources- Energy Management System-Wide Area Applications, Visualization Techniques- Data Sources and

Associated External Systems- SCADA- Customer Information System- Modeling and Analysis Tools, Distribution System Modeling- Topology Analysis- Load Forecasting- Power Flow Analysis- Fault Calculations-State Estimation- Applications-System Monitoring- Operation- Management- Outage Management System-Overview of energy storage technologies.

SMART METERING AND DEMAND SIDE INTEGRATION | Lecture Hrs: 11 UNIT - III

Overview- Smart metering – Evolution of electricity metering- key components of smart metering- smart meters: an overview of the hardware used - signal acquisition- signal conditioning-analogue to digital conversioncomputation-input/output and communication. Communication infrastructure and protocols for smart metering -Home area network, Neighborhood Area Network- Data Concentrator- meter data management system- Protocols for communication. Demand Side Integration- Services Provided by DSI-Implementation of DSI- Hardware Support- Flexibility Delivered by consumers from the Demand Side- System Support from DSI.

UNIT – IV COMMUNICATION TECHNOLOGIES FOR THE SMART | Lecture Hrs: 10 **GRID**

Data Communications: Dedicated and Shared Communication Channels, Switching Techniques, Circuit Switching, Message Switching, Packet Switching- Communication Channels, Introduction to TCP/IP. Communication Technologies: IEEE 802 Series- Mobile Communications- Multi-Protocol Label Switching-

UNIT - VINFORMATION SECURITY FOR THE SMART GRID Lecture Hrs: 10

Overview- Encryption and Decryption, Symmetric Key Encryption- Public Key Encryption- Authentication-Authentication Based on Shared Secret Key- Authentication Based on Key Distribution Center- Digital Signatures- Secret Key Signature-Public Key Signature- Message Digest.

Textbooks:

Power line Communication.

- 1. Janaka Ekanayake, Kithsiri Liyanage, et.al., Smart Grid Technology and Applications, Wiley Publications, 1st edition, 2012.
- 2. James Momoh, Smart Grid: Fundamentals of Design and Analysis, Wiley, IEEE Press, 1st edition, 2012.
- 3. Bharat Modi, Anuprakash, Yogesh Kumar, Fundamentals of Smart Grid Technology, S.K Kataria& Sons, 1st edition, 2019.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Reference Books:

- 1. Eric D. Knapp, Raj Samani, Applied Cyber Security and the Smart Grid-Implementing Security Controls into the Modern Power Infrastructure, Syngress Publishers, 1st edition, 2013.
- 2. Nouredine Hadjsaid, Jean Claude Sabonnadiere, Smart Grids, Wiley Blackwell Publications, 1st edition, 2012.
- 3. Peter-Fox Penner, Smart Power: Climate Changes, the Smart Grid and the future of electric utilities, Island Press, 1st edition, 2010.

Online Learning Resources:

www.indiasmartgrid.org

M.TECH, IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	ELECTRIC VEHICLE ENGINEERING	L	T	P	C
21D49104c	(PE-II)	3	0	0	3
	Semester	Ι			

Course Objectives: To make the student

- Remember and Understand the differences between conventional Vehicle and Electric Vehicles, electro mobility and environmental issues of EVs.
- Analyze various EV configurations, parameters of EV systems and Electric vehicle dynamics.
- Analyze the basic construction, operation and characteristics of fuel cells and battery charging techniques in HEV systems.
- Design and analyze the various control structures for Electric vehicle

Course Outcomes (CO): Student will be able to

- To understand and differentiate between Conventional Vehicle and Electric Vehicles, electro mobility and environmental issues of EVs.
- To remember and understand various configurations in parameters of EV system and dynamic aspects of EV.
- To analyze fuel cell technologies in EV and HEV systems.
- To analyze the battery charging and controls required of EVs.

UNIT – I Introduction to EV Systems and Energy Sources Lecture Hrs: 10

Past, Present and Future of EV - EV Concept- EV Technology- State-of-the Art of EVs- EV configuration- EV system- Fixed and Variable gearing- Single and multiple motor drive- In-wheel drives- EV parameters: Weight, size, force and energy, performance parameters.

Electro mobility and the environment- History of Electric power trains- Carbon emissions from fuels-Green houses and pollutants- Comparison of conventional, battery, hybrid and fuel cell electric systems.

UNIT – II EV Propulsion and Dynamics

Lecture Hrs: 10

Choice of electric propulsion system- Block diagram- Concept of EV Motors- Single and multi motor configurations- Fixed and variable geared transmission- In-wheel motor configuration- Classification- Electric motors used in current vehicle applications- Recent EV Motors- Vehicle load factors- Vehicle acceleration.

UNIT - III Fuel Cells

Lecture Hrs: 10

Introduction of fuel cells- Basic operation- Model - Voltage, power and efficiency- Power plant system – Characteristics- Sizing - Example of fuel cell electric vehicle.

Introduction to HEV- Brake specific fuel consumption - Comparison of Series-Parallel hybrid systems-Examples.

UNIT – IV Battery Charging and Control

Lecture Hrs: 12

Battery charging: Basic requirements- Charger architecture- Charger functions- Wireless charging-Power factor correction.

Control: Introduction- Modeling of electro mechanical system- Feedback controller design approach- PI controllers designing- Torque-loop, Speed control loop compensation- Acceleration of battery electric vehicle.

UNIT – V Energy Storage Technologies

Lecture Hrs: 10

Role of Energy Storage Systems- Thermal- Mechanical-Chemical- Electrochemical- Electrical - Efficiency of energy storage systems- Super capacitors-Superconducting Magnetic Energy Storage (SMES)- SoC- SoH -fuel cells - G2V- V2G- Energy storage in Micro-grid and Smart grid- Energy

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Management with storage systems-Hybrid energy storage systems -Battery SCADA

Textbooks:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001,1st Edition
- 2. Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt," Energy Storage in Power Systems" Wiley Publication, ISBN: 978-1-118-97130-7, Mar 2016,1st Edition

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2021,3rd Edition.
- 2. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 2015,1st Edition
- 3. A.G.Ter-Gazarian, "Energy Storage for Power Systems", the Institution of Engineering and Technology (IET) Publication, UK, (ISBN 978-1-84919-219-4), Second Edition, 2011.
- 3. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Elelctric, Hybrid Elelctric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004,1st Edition
- 4. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003,2nd Edition.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/108/102/108102121/
- 2. https://nptel.ac.in/syllabus/108103009

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code MACHINES & POWER SYSTEMS LAB		L	T	P	C
21D49105		0	0	4	2
Semester				I	

Course Objectives: To make the student

- Understand the experiments ensuring the safety of equipment and personnel.
- Analyze the power system data fault studies.
- Interpret the experimental results and correlating them with the practical power system.
- Design the relays for power system protection purpose.

Course Outcomes (CO): Student will be able to

- Understand the concept of different experiments.
- Analyze the data for and compute the data to obtain results.
- Apply the computational results to solve the original power system problems.
- Develop advanced relays to identify various faults.

List of Experiments:

- 1. Determination of Subtransient Reactance of a Salient Pole Machine
- 2. Determination of Sequence Impedances of a Cylindrical Rotor Synchronous Machine
- 3. Fault Analysis
 - i) LG Fault
 - ii) LL Fault
 - iii) LLG Fault
 - iv) LLLG Fault
- 4. Equivalent Circuit of a Three Winding Transformer
- 5. Separation of No Load losses of a Three Phase Squirrel Cage Induction Motor
- 6. Power Angle Characteristics of a Salient Pole Synchronous Machine
- 7. Characteristics of Static/Numeric Over Current Relay
- 8. Characteristics of Static Negative Sequence Relay
- 9. Characteristics of Static/Numeric Over Voltage Relay
- 10. Characteristics of Static/Numeric Percentage Biased Differential Relay
- 11. Testing of Buchholz relay
- 12. Testing of Frequency Relay.
- 13. Testing of Reverse Power Relay.
- 14. Testing of Earth fault Relay

Web Sources: https://www.vlab.co.in

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	POWER SYSTEMS SIMULATION LAB	L	T	P	C
21D49106		0	0	4	2
	Semester	T	•	•	,

Course Objectives: To make the student

- Understand how to write the coding in simulation
- Analyze the data related to load flows, economic dispatch problem and transient stability analysis.
- Apply the computational results in real life power system problems.
- Have the capabilities to develop new software's to optimize the results.

Course Outcomes (CO): Student will be able to

- Understand the coding in simulation
- Analyze the power system data for load-flow and stability studies.
- Apply computational methods for large scale power system studies.
- Develop software for power system industry to solve various issues.

List of Experiments:

- 1. Y Bus Formation
- 2. Gauss Seidel Load Flow Analysis
- 3. Fast Decoupled Load Flow Analysis
- 4. Fast Decoupled Load Flow Analysis for Distribution Systems
- 5. Point by Point Method
- 6. Computation of Available Transfer Capabilities.
- 7. Contingency analysis.
- 8. State estimation using Weighted Least Square, linear and non-linear methods.
- 9. Simulation of power quality problems (Sag/Swell, interruption, transients, harmonics, flickers etc.)
- 10. Harmonic analysis and Single tuned filter design to mitigate harmonics.
- 11. Harmonic analysis and Double tuned filter design to mitigate harmonics.

Web Sources: https://www.vlab.co.in

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	RESEARCH METHODOLOGY AND IPR		L	T	P	C
21DRM101			2	0	0	2
,	Sen	nester			Ι	
Course Objective						
Course Objectiv						
 Identify a Understand 	an appropriate research problem in their interesting domain. and ethical issues understand the Preparation of a research pro-	signt the	aia ran	out.		
	nd the Preparation of a research project thesis report	ject me	esis rep	ort.		
	nd the law of patent and copyrights.					
	nd the law of patent and copyrights. nd the Adequate knowledge on IPR					
	es (CO): Student will be able to					
	research related information					
	esearch ethics					
	nd that today's world is controlled by Computer, Information	ion Tec	hnolog	ry hut	tom	orro
	Il be ruled by ideas, concept, and creativity.	.1011 1 00	Jiliolog	sy, out	tom	OHO
	nding that when IPR would take such important place in gro	wth of	individ	uals &	natio	n it :
	to emphasis the need of information about Intellectual Prop					
students i	in general & engineering in particular.	orty reig	5111 10 0	e prom	ioica c	
	nd that IPR protection provides an incentive to inventor	s for fu	ırther	researc	h worl	k an
	nt in R & D, which leads to creation of new and better pr					
	e growth and social benefits.	,			8	
UNIT - I		re Hrs:				
Meaning of rese	arch problem, Sources of research problem, Criteria Ch		stics o	f a go	od res	earc
	in selecting a research problem, scope, and objectives of r					
	solutions for research problem, data collection, and					
instrumentations	<u>-</u>					
UNIT - II	Lectu	re Hrs:				
Effective literatur	re studies approaches, analysis Plagiarism, Research ethics,	Effecti	ve tech	nnical v	writing	, ho
	Paper Developing a Research Proposal, Format of research	rch proj	posal,	a prese	entatio	n an
	eview committee.					
UNIT - III		re Hrs:				
	ctual Property: Patents, Designs, Trade and Copyright. Proce					
	earch, innovation, patenting, development. International So		Interna	ational	coope	ratio
	operty. Procedure for grants of patents, Patenting under PCT					
UNIT - IV		re Hrs:				
	ope of Patent Rights. Licensing and transfer of technology.	Patent i	nforma	tion an	d data	bases
Geographical Ind	ications.					
UNIT - V						
Textbooks:						
1. Stuart	Melville and Wayne Goddard, "Research methodology	an in	troduct	ion for	scien	ice &
engineeri	ng students'"					
	e Goddard and Stuart Melville, "Research Methodology: An	<u>Intr</u> odu	ction"			
Reference Books); ;					
1. 1. Ra	njit Kumar, 2nd Edition, "Research Methodology: A Step by	Step C	uide fo	or		
	nners"	•				
3. 2. Ha	albert, "Resisting Intellectual Property", Taylor & Drang, France	is Ltd ,	2007.			
	ayall, "Industrial Design", McGraw Hill, 1992.					
	ebel, "Product Design", McGraw Hill, 1974.					
6 5 Aa	vimov "Introduction to Design" Prentice Hell 1062					

7. 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New

6. 5. Asimov, "Introduction to Design", Prentice Hall, 1962.

8. Technological Age", 2016.

Lecture Hrs: 10

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU - 515 002 (A.P) INDIA

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Cod	e	L	Т	P	C	
21D49201	POWER SYSTEM STABILITY & CONTROL	3	0	0	3	
Semester II						
C 01;	At the Transit of the Article					
•	ectives: To make the student					
• U1	derstand about linear and nonlinear models of multi-machine power sy	stems.				
• A ₁	alyze various types of stability properties of power systems.					
	entify power system models from dynamic data and simulate excitation achines.	n mec	hanisms	s in syn	chronous	
• Design excitation systems and their state space model equations for further stability applications.						

Course Outcomes (CO): Student will be able to

- Understand the concepts of single and multi-machine systems connected to infinite bus bar.
- Analyze system responses to small disturbances and concept of dynamic stability and power system stabilizers.
- Apply the various stability methods to evaluate the stability of the system.
- Design the state space model equations for excitation systems and methods for finding voltage and angle instability. THE ELEMENTARY MATHEMATICAL MODEL

			21,1111101	IL MODEL	Lecture This. 10			
Introduction to equal area criteria – Power Angle curve of a Synchronous Machine – Model of single machine								
connected to an infinite bus - Model of multimachine system - Problems - Classical Stability Study of								
multimachine system –	- Effect of the ex	citation system on	Transient	stability.				
UNIT - II	SYSTEM	RESPONSE	TO	SMALL	Lecture Hrs: 8			
	DISTURBAN	CES AND DYNA	AMIC STA	ABILITY				
The unregulated synchronous Machine - Modes of oscillation of an unregulated multimachine system -								
Regulated synchronous machine – Voltage regulator with one time lag – Governor withone time lag – Problems -								

Concept of Dynamic stability – State-space model of single machine system connected to infinite bus – Effect of excitation on Dynamic stability – Examination of dynamic stability by Routh-Hurwitz criterions.

UNIT - III	POWER SYSTEM STABILIZERS	Lecture Hrs: 12
Introduction to suppler	nentary stabilizing signals - Block diagram of the linear sys	tem – Approximate model of
the complete exciter –	Generator system – Lead compensation – Stability analysis us	sing eigen value approach.

UNIT - IV EXCITATION SYSTEMS Lecture Hrs:12

Introduction to excitation systems - Non-continuously, Continuously regulated systems - Excitation system compensation - State-space description of the excitation system - Simplified linear model - Effect of excitation on generator power limits. Type-2, Type-3 and Type-4 excitation systems and their state-space modeling equations.

Lecture Hrs:10 UNIT - V STABILITY ANALYSIS

Review of Lyapunov's stability of non-liner systems using energy concept - Method based on first concept -Method based on first integrals – Zubov's method – Popov's method – Lyapunov function for single machine connected to infinite bus - Voltage stability - Factors affecting voltage instability and collapse - Comparison of Angle and Voltage stability – Analysis of voltage instability and collapse – Control of voltage instability.

Textbooks:

UNIT - I

- 1. Vijay Vittal, James D. McCalley, Paul M. Anderson "Power System Control and Stability", Jhon Willey and Sons, 3rd edition, 2019.
- 2. Prabha Kundur, "Power System Control and Stability", McGraw Hill Education India, 1st edition, 5th reprint, 2008.

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. Dr Jan Machowski, Dr Janusz W. Bialek, Dr Jim Bumby · "Power System Dyanmics: Stability and Control", Jhon willey and Sons, 2nd Edition, 2011.
- 2. M.A.Pai, Power System Stability-Analysis by the direct method of Lyapunov, North HollandPublishing Company, New York, 1st edition, 1981.

Online Learning Resources:

1. https://nptel.ac.in/courses/108/105/108105133/

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	FACTS CONTROLLERS	L	T	P	C
21D49202	FACIS CONTROLLERS	3	0	0	3
	Semester	II			

Course Objectives: To make the student

- To understand the fundamentals of FACTS Controllers, Importance of controllable parameters and types of FACTS controllers & their benefits
- To explain control of STATCOM and SVC and their comparison and the regulation of STATCOM
- To remember the objectives of Shunt and Series compensation
- To analyze the functioning and control of GCSC, TSSC and TCSC

Course Outcomes (CO): Student will be able to

- Understand various control techniques for the purpose of identifying the scope and for selection of specific FACTS controllers.
- Remember different types of controllable VAR generation and variable impedance techniques.
- Design simple converters using FACTS controllers.
- Understand the operation of Unified Power Controller and Hybrid Arrangements.

UNIT - I FACTS CONCEPTS, VSI AND CSI

Lecture Hrs: 10

Transmission interconnections power flow in an AC system, loading capability limits, Dynamic stability considerations, importance of controllable parameters basic types of FACTS controllers, benefits fromFACTS controllers. Single phase three phase full wave bridge converters transformer connections for 12 pulse 24 and 48 pulse operation. Three level voltage source converter, pulse width modulation converter, basic concept of current source Converters, and comparison of current source converters with voltage source converters.

UNIT - II **SHUNT COMPENSATION**

Lecture Hrs: 8

Objectives of shunt compensation - Methods of controllable var generation - Variable impedance type static var generators - switching converter type var generators - hybrid var generators - Comparison of SVC and STATCOM.

UNIT - III SERIES COMPENSATION

Lecture Hrs: 12

Objectives of series compensation – GTO Thyristor Controlled Series Capacitor (GCSC) - Thyristor Switched Series Capacitor (TSSC) - Thyristor Controlled Series Capacitor (TCSC) - Control schemes for TCSC, TSSC and TCSC.

UNIT - IV

UNIFIED POWER FLOW CONTROLLER (UPFC)

Lecture Hrs:12

Introduction - The Unified Power Flow Controller - Basic Operating Principles - Conventional Transmission Control Capabilities - Independent Real and Reactive Power Flow Control - Control Structure - Basic Control System for P and Q Control - Hybrid Arrangements: UPFC With a Phase Shifting Transformer.

UNIT - V

INTERLINE POWER FLOW CONTROLLER (IPFC) | Lecture Hrs: 10

Introduction, basic operating principle and characteristics of IPFC, control structure, practical and application considerations, generalized and multifunctional fact controllers

Textbooks:

- 1. Understanding FACTS Concepts and technology of Flexible AC Transmission systems, Narain G. Hingorani, Laszlo Gyugyi, IEEE Press, WILEY, 1st Edition, 2000, Reprint 2015.
- 2. FACTS Controllers in Power Transmission and Distribution, Padiyar K.R., New Age International Publishers, 1st Edition, 2007.

- 1. Flexible AC Transmission Systems: Modelling and Control, Xiao Ping Zhang, Christian Rehtanz, Bikash Pal, Springer, 2012, First Indian Reprint, 2015.
- 2. FACTS Modelling and Simulation in Power Networks, Enrigue Acha, Claudio R. Fuerte –

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Esquival, Huge Ambriz – perez, Cesar Angeles – Camacho, WILEY, 1st edition, 2004

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	POWER SYSTEM WIDE AREA MONITORING AND	L	T	P	C
21D49203a	CONTROL (PE – III)	3	0	0	3
Semester		II		•	•

Course Objectives: To make the student

- To know the necessity of real-time computer control of power systems and wide area measurement system.
- To get the knowledge of different automation systems.
- To know the complete fundamentals of SCADA and its importance in real time powersystems.
- To get the knowledge about Substation Automation, New Digital Substation and traditional approach and IED-based approach of Integrated Protective Functions.
- To study about Voltage stability, prevention of voltage collapse and dynamic stabilityanalysis.

Course Outcomes (CO): Student will be able to

- Know the necessity of real-time computer control of power systems and wide area measurement system.
- Get the knowledge of different automation systems.
- Know the complete fundamentals of SCADA and its importance in real time powersystems.
- Get the knowledge about Substation Automation, New Digital Substation and traditional approach and IED-based approach of Integrated Protective Functions.
- Study about Voltage stability, prevention of voltage collapse and dynamic stability analysis.

UNIT - I COMPUTER CONTROL OF POWER SYSTEMS

Lecture Hrs: 10

Need for computer control of power systems, Operating states of a power system, Supervisory Control and Data Acquisition system, Energy control centers. Wide Area Measurement system (WAMS): Architecture, Components of WAMS, Applications: Voltage Stability Assessment, Frequency stability Assessment, Power Oscillation Assessment, Communication needs of WAMS, Wide Area Monitoring Protection & Control, and Remedial Action Scheme.

UNIT - II POWER SYSTEM AUTOMATION

Lecture Hrs: 8

Introduction, Evolution of Automation Systems, History of Automation Systems, Supervisory Control and Data Acquisition (SCADA) Systems, Components of SCADA Systems, SCADA Applications, SCADA in Power Systems, SCADA Basic Functions, SCADA Application Functions, Advantages of SCADA in Power Systems, Deferred Capital Expenditure, Optimized Operation and Maintenance Costs, Equipment Condition Monitoring (ECM), Sequence of Events (SOE) Recording, Power Quality Improvement, Data Warehousing for Power Utilities, Power System Field, Transmission and Distribution Systems, Customer Premises, Types of Data and Signals in Power Systems, Flow of Data from the Field to the SCADA Control Center

UNIT - III SCADA FUNDAMENTALS

Lecture Hrs: 12

Introduction, Open System: Need and Advantages, Building Blocks of SCADA Systems, Remote Terminal Unit (RTU), Evolution of RTUs, Components of RTU, Communication Subsystem, Logic Subsystem Termination Subsystem, Testing and Human-Machine Interface (HMI) Subsystem, Power Supplies, Advanced RTU Functionalities, Intelligent Electronic Devices (IEDs), Evolution of IEDs, IED Functional Block Diagram, Hardware and Software Architecture of the IED, IED Communication Subsystem, IED Advanced Functionalities, Tools for Settings, Commissioning, and Testing, Programmable LCD Display, Typical IEDs, Data Concentrators and Merging Units, RTUs, IEDs, and Data Concentrator, Merging Units and IEDs.

UNIT - IV SUBSTATION AUTOMATION

Lecture Hrs:12

Substation Automation: Technical Issues, System Responsibilities, System Architecture, Substation Host Processor, Substation LAN, User Interface, Communications Interfaces, Protocol Considerations. The New Digital Substation, Process Level, Protection and Control Level, Station Bus and Station Level, Substation

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Automation Architectures, Legacy Substation Automation System, Digital Substation Automation Design, New versus Existing Substations. Drivers of Transition, Migration Paths and the Steps Involved, Value of Standards in Substation Automation, Substation Automation (SA) Application Functions, Integrated Protection Functions: Traditional Approach and IED-Based Approach. Automation Functions, Enterprise- Level Application Functions.

UNIT - V VOLTAGE STABILITY

Lecture Hrs:10

Basic concepts, Voltage collapse – general characterization, classification, Voltage stability analysis – modeling, dynamic analysis, static analysis, shortest distance to instability, continuation power flow analysis, prevention of voltage collapse – design measures, operating measures.

Textbooks:

- 1. Allen J. Wood and Bruce Woolenberg, Power System Generation, Operation and Control, John Wiley and Sons, 3rd edition, 2013.
- 2. **Prabha Kundur**, "Power System Control and Stability", McGraw Hill Education India, 1st edition, 5th reprint, 2008.
- 3. Mini S. Thomas and John Douglas McDonald, Power System SCADA and Smart Grids, CRC Press, 1st edition, 2015.

- 1. E. Handschin, Real-time Control of Electrical Power Systems, Elsevier Publications & Co, 1st edition, 1988.
- 2. Special Issue on Computer Control of Power Systems, IEEE Proc, July 1974.

M.TECH, IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	MODERN CONTROL THEORY	L	T	P	C
21D49203b	(PE-III)	3	0	0	3
	Semester	II			

Course Objectives: To make the student

- Remember and understand the concept of state space representation, Solution of state equation, STM, linearization of nonlinear systems, controllability and observability concepts, principles of duality, concepts of optimal and Lyapunov stability.
- Apply the above concepts to analyze controllability, Observability and pole placement by state feedback
- Analyze the concept of regulator, stability and sensitivity using various methods and disturbance rejection
- Design Full order observer and reduced order observer.

Course Outcomes (CO): Student will be able to

- Understand the state space representation, controllability and observability concepts, principles of duality, concepts of optimal and Lyapunov stability.
- Apply the state equations, pole placement by state feedback.
- Analyze controllability & observability of state models.
- Design full order observer and reduced order observer.

UNIT - I STATE VARIABLE DISCRIPTION Lecture Hrs: 10

Introductory matrix algebra and linear Vector Space, State space representation of systems- Linearization of a non-linear System- Solution of state equations- Evaluation of State Transition Matrix (STM).

UNIT - II	TRANSFORMATION,	POLEPLACEMENT	AND	Lecture Hrs: 8
	CONTROLLABILITY			

Similarity transformation and invariance of system properties due to similarity transformations. Minimal realization of SISO, SIMO and MISO transfer functions. Discretization of a continuous time state space model-Conversion of state space model to transfer function model using Fadeeva algorithm- Fundamental theorem of feedback control - Controllability and Controllable canonical form - Pole assignment by state feedback using Ackermann's formula— Eigen structure assignment problem.

UNIT - III OPTIMAL CONTROL Lecture Hrs: 12

Linear Quadratic Regulator (LQR) problem and solution of algebraic Riccati equation using Eigen value and Eigen vector methods- iterative method- Controller design using output feedback.

UNIT - IV OBSERVERS Lecture Hrs: 12

Observability and observable canonical form-Design of full order observer using Ackermann's formula -Bass Gura algorithm- Duality between controllability and observability- Full order Observer based controller design-Reduced order observer design.

UNIT - V STABILITY ANALYSIS AND SENSITIVITY Lecture Hrs: 10

Internal stability of a system- Stability in the sense of Lyapunov- Asymptotic stability of linear time invariant continuous and discrete time systems- Solution of Lyapunov type equation- Model decomposition and decoupling by state feedback- Disturbance rejection- sensitivity and complementary sensitivity functions.

Textbooks:

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, India, 5th edition, 2010.
- 2. T. Kailath, "Linear Systems", Prentice Hall, 2016.
- 3. N.K. Sinha, "Control Systems", New Age International, 4th edition, 2013.

Reference Books:

1. Panos J Antsaklis, and Anthony N.Michel,"LinearSystems", New-age international (P) LTD.Publishers, 2009.

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 2. John JD Azzoand C. H. Houpis, "Linear Control System Analysis and Design conventional and Modern", Mc Graw-Hill Book Company, 3rd edition, 1988.
- 3. B.N.Dutta, "Numerical Methods for linear Control Systems", Elsevier Publication, 2007.
- 4. C.T. Chen "Linear System Theory and Design-PHI, India,1984.
- 5. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", 11th Edition, Pearson Edu., India, 2009

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	REACTIVE POWER COMPENSATION &	L	T	P	C
21D49203c	MANAGEMENT (PE-III)	3	0	0	3
	Semester	II			
01111					
•	ves: To make the student				
	ify the necessity of reactive power compensation			.::	~~~~
	ribe load compensation and various types of reactive power compensate reactive power coordination system	sauon	n transn	11881011	systems
	rate reactive power coordination system acterize distribution side and utility side reactive power management				
	nes (CO): Student will be able to	•			
		OX 1100 100	24mi 201 1c	o d o	
	d the importance of load compensation in symmetrical as well as un	symme	etricai ic	aas	
	arious compensation methods in transmission lines odel for reactive power coordination				
		MINOR PO	onogom	ant	
UNIT - I	ish demand side reactive power management & user side reactive pour LOAD COMPENSATION		ianagem ire Hrs:		
					•
	specifications – Reactive power characteristics – Inductive and capa				
	or as a voltage regulator – Phase balancing and power factor correct	.1011 01	unsymm	ietricai	ioads -
Examples.		т ,	***	0	
UNIT - II	STEADY STATE & TRANSIENT STATE	Lecti	ire Hrs:	8	
	REACTIVE POWER COMPENSATION IN				
	TRANSMISSION SYSTEM				
	line - Types of compensation - Passive shunt and series and dynamics and dynamics - Types of compensation - Passive shunt and series and dynamics - Types of compensation - Passive shunt and series and dynamics - Types of compensation - Passive shunt and series and dynamics - Types of compensation - Passive shunt and series and dynamics - Types of compensation - Passive shunt and series and dynamics - Types of compensation - Passive shunt and series and dynamics - Types - Ty				
	me periods - Passive shunt compensation - Static compensation-S	eries c	apacitor	compe	nsation
	using synchronous condensers –Examples.	T			
UNIT - III	REACTIVE POWER COORDINATION & DEMAND SIDE MANAGEMENT	Lecti	ire Hrs:	12	
Objective – Mat	hematical modeling – Operation planning – Transmission benefits –	Basic	concept	s of qu	ality of
	Disturbances - Steady - state variations - Effects of under Voltage				
	and electromagnetic interferences. Load patterns - Basic methods -				
	ariffs - penalties for voltage flickers and Harmonic voltage levels.		1 0		
UNIT - IV		Lectu	ire Hrs: 1	2	
	DISTRIBUTION & USER SIDE REACTIVE POWER				
	MANAGEMENT				
System losses –	Loss reduction methods – Examples – Reactive power planning	– Ohi	ectives -	- Econo	omics -
	for placement – Retrofitting of capacitor banks - KVAR requirement				
	g capacitors – Selection of capacitors – Deciding factors – Types				
and Limitations.		or cup	,		
UNIT - V	REACTIVE POWER MANAGEMENT IN	Lecti	ire Hrs: 1	.0	
	ELECTRIC TRACTION SYSTEMS AND ARC			-	
	FURNACES				
Typical layout o		ution	transform	T	Zlaatria
= JPIII Injout o	of traction systems – Reactive power control requirements – Distrir	ullini	ו ייטואוואוו	ners - r	riechic
arc furnaces - Fr	of traction systems – Reactive power control requirements – Distribution of transformer – Filter requirements – Remedial measures – Power control requirements – Remedial measures – R				

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. T.J.E.Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, 5th edition, 2017.
- 2. D.M.Tagare, Reactive power Management, Tata Mc Graw Hill, 1st edition, 2004.

- 1. Dr. Hidaia alassouli, "Reactive Power Compensation", Kindle Edition.2018.
- 2. Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide, Wiely publication, 4th edition, April, 2012.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Objectives: To make the student To understand power quality definition, power quality standards. To remember measuring & solving power quality problems. To apply the various types of linear and nonlinear loads To analyse harmonic methodology, mitigation techniques and case study	L	T	P	C
 Course Objectives: To make the student To understand power quality definition, power quality standards. To remember measuring & solving power quality problems. To apply the various types of linear and nonlinear loads To analyse harmonic methodology, mitigation techniques and case study 	3	0	0	3
 To understand power quality definition, power quality standards. To remember measuring & solving power quality problems. To apply the various types of linear and nonlinear loads To analyse harmonic methodology, mitigation techniques and case study 	II			
 To understand power quality definition, power quality standards. To remember measuring & solving power quality problems. To apply the various types of linear and nonlinear loads To analyse harmonic methodology, mitigation techniques and case study 				
 To remember measuring & solving power quality problems. To apply the various types of linear and nonlinear loads To analyse harmonic methodology, mitigation techniques and case study 				
 To apply the various types of linear and nonlinear loads To analyse harmonic methodology, mitigation techniques and case study 				
Course Outcomes (CO): Student will be able to				
Course Outcomes (CO). Student will be able to				

- Understand the fundamentals & terminology of power quality.
- Apply the concept of power frequency disturbances, types of transients & transient waveforms.
- Analyze the harmonic methodology & Electromagnetic Interference concepts.
- Remember the necessity of grounding and methods of grounding.
- Understand different techniques of measuring & solving power quality problems

UNIT - I	INTRODUCTION TO POWERQUALITY	Lecture Hrs: 10				
Definition of Power Quality - Power Quality Progression - Power Quality Terminology - Power Quality Issues-						
Responsibilities of Power Suppliers and Users-Power Quality Standards.						

UNIT - II	POWER	FREQUENCY	Lecture Hrs: 8
	DISTURBANCE&TRANSIENTS		

Introduction to Power Frequency Disturbance - Common Power Frequency Disturbances - Characteristics of Low Frequency Disturbances - Voltage Tolerance Criteria- ITIC Graph - Introduction to Transients - Transient System Model - Examples of Transient Models and Their Response - Power System Transient Modeling-Types and Causes of Transients - Examples of Transient Waveforms.

UNIT - III	HARMONICS	&	ELECTROMAGNETIC	Lecture Hrs: 12
	INTERFERENCE	(EMI)		

Definition of Harmonics - Harmonic Number (h) - Odd and Even Order Harmonics - Harmonic Phase Rotation and Phase Angle - Voltage and Current Harmonics - Individual and Total Harmonic Distortion - Harmonic Signatures - Effect of Harmonics On Power System Devices - Guidelines For Harmonic Voltage and Current Limitation - Harmonic Current Mitigation - Introduction to EMI - Frequency Classification - Electrical Fields-Magnetic Fields-EMI Terminology-Power Frequency Fields-High Frequency Interference-EMI Susceptibility-EMI Mitigation-Cable Shielding-Health Concerns of EMI.

UNIT - IV GROUNDINGANDBONDING Lecture Hrs: 12

Introduction to Grounding and Bonding-Shock and Fire Hazards-NEC Grounding Requirements-Essentials of a Grounded System-Ground Electrodes-Earth Resistance Tests-Earth Ground Grid Systems-Power Ground System-Signal Reference Ground(SRG)-SRG Methods-Single and Multipoint Grounding —Ground Loops — Electro chemical Reaction -Examples of Grounding Anomalies.

UNIT - V	MEASURING AND SOLVING POWER QUALITY	Lecture Hrs:10
	PROBLEMS	

Introduction to Power Quality Measurements-Power Quality Measurement Devices-Power Quality Measurements Test Locations-Test Duration-Instrument Setup- Instrument Guidelines — Power quality mitigating concepts and devices .

Textbooks:

- 1. Power quality by C. Sankaran, CRC Press, 1st Edition, 2001
- 2. Electrical Power Systems Quality, Roger C. Dugan, Mark F. Mc Granaghan, Surya Santoso, H. Wayne Beaty, 2nd Edition, TMH Education Pvt. Ltd, 1996.

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. Understanding Power quality problems by Math H. J.Bollen IEEE Press, 1st edition, 2000.
- 2. Power quality enhancement using custom power devices by Arindam, Ghosh, Gerard Ledwich, Kluwer, Academic publishers, 1st edition, 2002.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	DISTRIBUTED GENERATION & MICROGRID	L	T	P	C
21D49204b	CONTROL (PE-IV)	3	0	0	3
	Semester			II	
	to know about the concept of distributed generation, distribution grid, its configuration, advantages & limitations.	netwo	ık & uı	e conce	pt or
• Able	to understand the basic concepts in combined heat and power, W	Vind e	nergy co	onversio	on
•	ns, solar photovoltaic systems & other renewable energy sources.				
 Able to analyze the impact of Microgrid & Active distribution network management system on various factors. 					

Course Outcomes (CO): Student will be able to

• Understand the concept of distributed generation, distribution network & the concept of Microgrid, its configuration, advantages & limitations.

improvement technologies & issues of premium power in DC integration.

- Understand the basic concepts in combined heat and power, Wind energy conversion systems, Solar photovoltaic systems & other renewable energy sources.
- The impact of Microgrid & Active distribution network management system on various factors isknown.

Able to know the effect of SCADA & understand the concept of Power quality disturbances,

• Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration.

UNIT - I	INTRODUCTION	TO	DISTRIBUTED	Lecture Hrs: 10
	GENERATION AND	MICROGRI	DCONCEPT	

Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrids - Technical and economical advantages of Microgrid - Challenges and limitations of Microgrid development - Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid.

UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8

Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources - Storage devices.

UNIT - III	MICROGRID	AND	ACTIVE	DISTRIBUTION	Lecture Hrs: 12
	NETWORK MA	ANAGE	MENTSYST	EM	

Introduction - Impact on heat utilization - Impact on process optimisation - Impact on market - Impact on environment - Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Microsource controller - Central controller.

UNIT - IV SCADA AND ACTIVE DISTRIBUTION NETWORKS Lecture Hrs: 12

Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization - SCADA communication and control architectures - Communication devices.

UNIT - V	IMPACT OF DG INTEGRATION	Lecture Hrs:10
	ON POWER QUALITY AND RELIABILITY	

Introduction - Power quality disturbances - Power quality sensitive customers - Power quality improvement technologies - Impact of DG integration - Issues of premium power in DG integration.

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Textbooks:

- 1. S. Chowdhury, S.P. Chowdhury and P. Crossley, "Microgrids and Active Distribution Networks", The Institution of Engineering and Technology, 2009.
- 2. Rajeev Kumar Chuahan, Kalpana Chuahan, "Distributed Energy Resources in Microgrids: Integration, Chalenges and Optimization", Academic Press, 1st Edition, 2019

Reference Books:

1. Magdi S. Mahmoud, "MICROGRID Advanced Control Methods and Renewable Energy System Integration", Joc Hayton, 1st Edition, 2016.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	EHVAC TRANSMISSION	L	T	P	C
21D49204c	(PE-IV)	3	0	0	3
	Semester	II			

Course Objectives: To make the student

- To understand the basic concepts of EHVAC
- To Identify the factors affecting AC-DC transmission
- To analyze travelling waves and the effects of corona like audible noise
- To estimate field intensity at any point in EHV system with the help of different computational method

Course Outcomes (CO): Student will be able to

- Understand the basic concepts of EHVAC
- Identify the factors affecting AC-DC transmission
- Analyze travelling waves and the effects of corona like audible noise
- Estimate field intensity at any point in EHV system with the help of different computational method.

UNIT - I PRELIMINARIES

Lecture Hrs: 10

Lecture Hrs: 12

Necessity of EHV AC transmission – Advantages and problems – Power handling capacity and line losses-Mechanical considerations – Resistance of conductors – Properties of bundled conductors – Bundle spacing and bundle radius - Examples.

UNIT - II LINE AND GROUND REACTIVE PARAMETERS Lecture Hrs: 8

Line inductance and capacitances – Sequence inductances and capacitances – Modes of propagation – Ground return – Examples. Electrostatics – Field of sphere gap – Field of line changes and properties – Charge – potential relations for multi-conductors – Surface voltage gradient on conductors – Distribution of voltage gradient on subconductors of bundle – Examples.

UNIT - III CORONA EFFECTS

Power loss and audible noise (AN) – corona loss formulae – Charge voltage diagram – Generation, characteristics

- Limits and measurements of AN Relation between 1-phase and 3 -phase AN levels Radio interference (RI)
- Corona pulses generation, properties, limits Frequency spectrum Modes of propagation Excitation function

- Measurement of RI, RIV and excitation functions - Examples.

UNIT - IV ELECTROSTATIC FIELD & TRAVELING WAVE Lecture Hrs: 12 THEORY

Electrostatic field: calculation of electrostatic field of EHV/AC lines – Effect on humans, animals and plants – Electrostatic induction in un-energised circuit of double - circuit line – Electromagnetic interference - Examples. Traveling wave expression and solution - Source of excitation - Terminal conditions - Open circuited and short circuited end - Reflection and refraction coefficients - Lumped parameters of distributed lines - Generalized constants - No load voltage conditions and charging current.

UNIT - V VOLTAGE CONTROL Lecture Hrs:10

Power circle diagram and its use – Voltage control using synchronous condensers – Cascade connection of shunt and series compensation – Sub synchronous resonance in series capacitor – Compensated lines – Static VAR compensating system.

Textbooks:

- 1. Sanjay Kumar Sharma, "EHV-AC, HVDC Transmission and Distribution Engineering" 2nd Edition, 2016.
- 2. R. D. Begamudre, "EHVAC Transmission Engineering", New Age International (p) Ltd.2nd revised edition, 2012.
- 3. M. G. Dwek, EHV Transmission, Elsevier Sc., 3rd edition, 1992.

Reference Books:

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. R. Padiyar, HVDC Transmission Systems, Wiley Eastern Ltd., New Delhi, 2nd revised edition, 1992.
- 2. J. Arrilaga, High Voltage Direct Current Transmission, peter pereginver Ltd. London, U.K., 2nd edition, 1998
- 3. E.W. Kimbark, Direct Current Transmission-vol. 1, Wiley Inter science, New York, 1st edition, 1971

Online Learning Resources:

- https://www.ae.pwr.wroc.pl/filez/20110606092353_HEV.pdf
- https://www.afdc.energy.gov/pdfs/52723.pdf 5.https://www.leb.eei.uni
- langen.de/winterakademie/2010/report/content/course03/pdf/0308.pdf

M.TECH, IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	RENEWABLE ENERGY SYSTEMS LAB	L	T	P	C
21D49205		0	0	4	2
	Semester	II	•	•	

Course Objectives: To make the student

- Understand how to write the coding in MATLAB/Mipower
- Apply the SVC,STATCOM for voltage profile improvements & UPFC in power system networks.
- Analyze the data related to load flows incorporating SVC & STATCOM.
- Analyze operation of TCSC, STATCOM & SSSC for a transmission line fed by an ac supply.

Course Outcomes (CO): Student will be able to

- To observe the I-V and P-V curves and Series and Parallel connection of Solar systems
- To study the sun tracking and MPPT Charge Controllers of Solar systems
- To analyze Power, Voltage & Frequency Measurement of Wind Generator
- To Understand the Effect of temperature variation and Irradiation on Photovoltaic Array

List of Experiments:

- 1. Draw the I-V and P-V curves of Solar Panel using PV Panel
- 2. Study of Series and Parallel connection of Solar Panels
- 3. Study of Sun tracking system
- 4. Maximum Power Point Tracking Charge Controllers
- 5. Inverter control for Solar PV based systems
- 6. Power, Voltage & Frequency Measurement of output of Wind Generator
- 7. Impact of load and wind speed on power output and its quality
- 8. Performance of frequency drop characteristics of induction generator at different loading condition
- 9. Charging and Discharging characteristics of Battery

Simulation Experiments

- 1. Modelling of PV Cell
- 2. Effect of temperature variation on Photovoltaic Array
- 3. Effect of Irradiation on a Photovoltaic Array
- 4. Design of solar PV boost converter using P&O MPPT technique

Web Sources: https://www.vlab.co.in

Note: Conduct any 7 experiments from 1-9 list and minimum 3 experiments from 1-4 of Simulation experiments

M.TECH, IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

21D49206	0	Λ	4	•
212 3200	U	U	4	2
	Semester	r II		

Course Objectives: To make the student

- Understand how to write the coding in MATLAB/Mipower
- Apply the SVC,STATCOM for voltage profile improvements & UPFC in power system networks.
- Analyze the data related to load flows incorporating SVC & STATCOM.
- Analyze operation of TCSC, STATCOM & SSSC for a transmission line fed by an ac supply.

Course Outcomes (CO): Student will be able to

- Understand Load balancing using compensators.
- Apply load balancing using Compensators.
- Analyse load flow incorporating SVC & STATCOM.
- Develop a Simulation model for STATCOM & UPFC.

List of Experiments:

- 1. Voltage regulation using shunt and series compensation
- 2. Load balancing in power system network using compensators
- 3. Simulation of TCSC
- 4. Voltage profile improvement using SVC
- 5. Voltage profile improvement using STATCOM
- 6. Transient Stability enhancement using STATCOM.
- 7. Simulation of UPFC with mathematical models
- 8. Load flow incorporating SVC
- 9. Load flow incorporating STATCOM
- 10. Simulation of DVR
- 11. Transmission Line Characteristics (P vs δ , Q vs δ , P vs Distance, Q vs Distance and V vs Distance) with and without Compensation
- 12. Sizing- simulation and operation of TCR and FC-TCR for a transmission line fed by an ac supply and feeding
 - (a) Resistive/inductive/capacitive load one at a time
 - (b) A load which can have leading as well as lagging behaviour
- 13. Sizing- simulation and operation of TCSC for a transmission line fed by an ac supply and feeding
 - (a) Resistive/inductive/capacitive load one at a time
 - (b) A load which can have leading as well as lagging behaviour
- 14. Sizing- simulation and operation of STATCOM for a transmission line fed by an ac supply and feeding
 - (a) Resistive/inductive/capacitive load one at a time
 - (b) A load which can have leading as well as lagging behaviour
- 15. Sizing- simulation and operation of SSSC for a transmission line fed by an ac supply and feeding
 - (a) Resistive/inductive/capacitive load one at a time
 - (b) A load which can have leading as well as lagging behaviour

Web Sources: https://www.vlab.co.in

M.TECH, IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code RESTRUCTURED POWER SYSTEMS		L	T	P	C
21D49301a	(PE-V)	3	0	0	3
	Semester]	III	
Course Objectives:	To make the student				
• Understan	d basic concepts of the restructuring of power industry and market	t mode	ls.		
 Analyze a 	bout the fundamental concepts of congestion management, Tra	nsfer	Capabil	itv issu	es an

- Apply the transmission cost allocation methods to evaluate the cost.
- Develop the operational planning activities in different competitive environment.

Course Outcomes (CO):Student will be able to

- Understand the differences between the conventional power system operation and the restructured one and basics concepts of market power, electricity pricing and competitive environment.
- Analyze the concepts of Independent System Operator (ISO) and Open Access Same-Time Information System (OASIS).
- Apply the methods to find Available Transfer Capability (ATC) and to allocate the Transmission cost.
- Develop power markets and market architectural aspects and short time Price forecasting.

UNIT – I	KEY ISSUES IN ELECTRIC UTILITIES	Lecture Hrs: 9
Introduction – Restruc	turing models - Independent System Operator (ISO) – Power Exchange – Market
operations – Market Po	wer - Standard cost - Transmission Pricing - Congestic	on Pricing – Management of Inter
zonal/Intra zonal Conge	estion.	

UNIT - II	POWER SYSTEM OPERATION IN COMPETITIVE	Lecture Hrs: 8
	ENVIRONMENT	

Introduction – Operational Planning Activities of ISO – The ISO in Pool Markets – The ISO in Bilateral Markets – Operational Planning Activities of a GENCO.

UNIT - III	AVAILABLE	TRANSFER	CAPABILITY	(ATC)	Lecture Hrs: 10
	&ELECTRICIT	ΓY PRICING			

Transfer Capability Issues – ATC – TTC – TRM – CBM Calculations – Calculation of ATC based on power flow – Electricity Pricing: Introduction – Electricity Price Volatility Electricity Price Indexes – Challenges to Electricity Pricing – Construction of Forward Price Curves – Short-time Price Forecasting.

UNIT - IV	OPEN	ACCESS	SAME-TIME	INFORMATION	Lecture Hrs: 9
	SYSTEM	I (OASIS) &	MARKETPOWE	E R	

Structure of OASIS – Posting of Information – Transfer capability on OASIS – Market Power: Introduction – Different types of market Power – Mitigation of Market Power – Examples

UNIT - V	TRANSMISSION	COST ALLOCATI	ON	Lecture Hrs: 10
	METHODS	&ANCILLARY	SERVICES	
	MANAGEMENT			

Transmission Cost Allocation Methods: Postage Stamp Rate Method – Contract Path Method – MW-Mile Method – Unused Transmission Capacity Method – MVA-Mile method – Comparison of cost allocation methods – Ancillary Services Management: Introduction – Reactive Power as an Ancillary Service, a Review – Synchronous Generators as Ancillary Service Providers.

Textbooks:

- 1. Kankar Bhattacharya, Math H.J. Boller and JaapE.Daalder, Operation of Restructured Power System, Kulwer Academic Publishers ,1st Edition ,2001
- 2. Mohammad Shahidehpour and Muwaffaq Alomoush, Restructured Electrical Power Systems, Marcel

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Dekker, Inc., 1st Edition ,2001.

Reference Books:

1. Loi Lei Lai, Power System Restructuring and Deregulation, John Wiley & Sons Ltd., England, 2001.

Online Learning Resources:

1. https://nptel.ac.in/courses/108/101/108101005/

T

P

C

Course Code

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

RELIABILITY ENGINEERING AND APPLICATION TO L

21D49301b	POWERSYSTEMS	3	0	0	3
2111473010	Semester	III	U	U	
	Schrester	1111			
Course Objective	es: To make the student				
- TT 1		· -			
	tand the basic concepts of reliability, Probability Density and Distrib				
	e reliability of various systems and the Concept of Stochastic Transit				
* *	ly the techniques of frequency and duration for reliability evaluation	•		•	•
	op the Merged State Model for evaluating basic reliability indices and s (CO): Student will be able to	i weati	ier enec	as.	
	tand the concept of probability theory, distribution, network modeling	r and r	aliabilit	v analv	reie
	e the reliability functions with their relationships and Markov-modell	_	CITAUIIII	y anary	515.
	e reliability models using frequency and duration techniques and gen		arious r	eliabili	tv
models	• • • • • • • • • • • • • • • • • • • •	ciate v	uiious i	CIIdoIII	· y
	the reliability composite systems and distribution systems for finding	reliab	ility inc	lices.	
UNIT – I	BASICS OF PROBABILITY THEORY,				
	DISTRIBUTION & NETWORKMODELLING				
Basic Probability	Theory - Rules for Combining Probabilities of Events - Bernoul	li's Tri	als -P	robabil	ity
Density and Dist	ribution Functions - Binomial Distribution - Expected Value and	Standa	ard Dev	viation	of
Binomial Distrib	ution - Analysis of Series, Parallel, Series-Parallel Networks -	Comp	lex Ne	tworks	_
Decomposition M		T			
UNIT - II	RELIABILITY FUNCTIONS		ure Hrs:	12	
•	ons $F(T)$, $F(T)$, $R(T)$, $H(T)$ and Their Relationships – Exponential D				
	and Standard Deviation of Exponential Distribution – Bath Tub C				nalysis
	Networks Using Exponential Distribution – Reliability Measures M7				
UNIT - III	MARKOV MODELLING AND FREQUENCY &	Lecti	ure Hrs:	10	
Madray Chains	DURATION TECHNIQUES Connect of Stackeria Transitional Probability Matrix Evol	4:	of I:		Ctata
	 Concept of Stochastic Transitional Probability Matrix— Evaluation Processes One Component Repairable System — Time Dependent 				
	ansform Approach – Evaluation of Limiting State Probabilities Usin				
• •	s – Frequency and Duration Concept – Evaluation of Frequency of F				
	One, Two Component Repairable Models – Evaluation of Cu				
·	uency of Encountering of Merged States – Approximate System R				
	tion – Basic probability indices – Cutest approach.				
UNIT - IV	APPLICATIONS TO POWER SYSTEMS -I	Lecti	ure Hrs:	14	
		D			· • •
	m Reliability Analysis: Reliability Model of a Generation System—	Recurs	sive Ke	lation I	or Un
	noval – Load Modeling - Merging of Generation Load Model	C	latina Ta		c
	Transition Rates for Merged State Model – Cumulative Probability,	Culliu	iauveri	equenc	y or
ranure Evaluation	1 – LOLP, LOLE, LOEE. APPLICATIONS TO POWER SYSTEMS - II	Locti	ure Hrs:	10	
	- Radial Networks – Evaluation of Basic Reliability Indices, Perform	1			Point
	bility Indices – Customer Oriented, Loss and Energy Oriented Indic				
•	ration RDS – Network reduction technique – cut set approaches – w		_	_	
	ble effects modeling and evaluation of basic probability indices.		311000	Tope	
Textbooks:	mare producting markets				

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

- 1. Reliability Evaluation of Engg. System R. Billinton, R.N.Allan, Plenum Press, New York, reprinted in India by B.S.Publications, 2007.
- 2. Reliability Evaluation of Power systems R. Billinton, R.N.Allan, Pitman Advance Publishing Program, New York, reprinted in India by B.S.Publications, 2007.

Reference Books:

1. System Reliability Concepts by Dr.V.Sankar, Himalaya Publishing House Pvt.Ltd,, Mumbai, 2015.

Online Learning Resources:

1. https://nptel.ac.in/courses/105/108/105108128/

M.TECH, IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	Course Code POWER SYSTEM AUTOMATION		T	P	C
21D49301c	(PE-V)	3	0	0	3
	Semester]	II	•
Course Object	tives: To make the student				
• Und	erstand the basic concepts of deregulation, power system automation.				
	true about the anguery control contains and applications of automation				
 Ana 	lyze about the energy control centers and applications of automation.				

Course Outcomes (CO): Student will be able to

- Understand the concepts of evolution of automation systems, SACADA, Congestion management.
- Analyze the techniques to resolve problems in energy control centers, data ware housing.

Develop the models to control the system and energy control centers.

- Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level.
- Develop the real time case studies to solve the critical problems in power system automation.

UNIT – I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10

Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.

UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9

Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.

UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10

Substation automation – Conventional automation – New smart devices for substation automation – new integrated digital substation – Technical issues new digital simulation – Substation automation architectures – Substation automation applications functions – Benefits of data warehousing.

UNIT - IV ENERGY CONTROL CENTERS Lecture Hrs: 10

Introduction – Energy control centers – EMS framework – Data acquisition and communication – Generation operation and management – Transmission operations – Real time Study-mode Simulations – Post-event analysis and energy scheduling and accounting – Dispatcher training simulator – Smart transmission.

UNIT - V DISTRIBUTION AUTOMATION Lecture Hrs: 10

Introduction to Distribution automation – Customer, feeder and substation automation – Subsystems in a distribution control center – Distributed Management System (DMS) framework integration with subsystems – Advanced real-time DMS applications – Advanced analytical DMS applications – DMS coordination with other systems.

Textbooks:

- $1.\,M$ Shahidehpour, Muwaffaq Alomoush, Restructured electrical power systems operation, trading and volatility, CRC Press, 1^{st} Edition, 2001.
- 2. Mini S Thomas and John D Mcdonald, Power System SCADA and Smart Grids, CRC Press, 1st Edition 2015.

Reference Books:

- 1. Torsten cegrell, Power systems control Technology, Prentice Hall, 1st Edition, 1986.
- 2. James Northcote-Green and Robert Wilson, Control and Automation of Electrical Power Distribution Systems, CRC Press, 1st Edition, 2013.
- 3. Edmund Handschin, Real time control of Electric Power System, Elsevier Publishing Company, 1st Edition, 1972.

Online Learning Resources:

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

1. https://nptel.ac.in/courses/108/106/108106022/

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

AUDIT COURSE-I

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

Course Code	ENGLISH FOR RESEARCH PAPER WRITING	L	T	P	C
21DAC101a		2	0	0	0
	Semester			I	
G 011 4	TT 11 11 11 11 11 11 11 11 11 11 11 11 1				
Course Objective	res: This course will enable students:				
 Understa 	nd the essentials of writing skills and their level of readability				
 Learn ab 	out what to write in each section				
	ualitative presentation with linguistic accuracy				
	es (CO): Student will be able to				
	nd the significance of writing skills and the level of readability				
 Analyze 	and write title, abstract, different sections in research paper				
	the skills needed while writing a research paper				
UNIT - I			e Hrs		
	Research Paper- Planning and Preparation- Word Order- Useful P				
	es-Structuring Paragraphs and Sentences-Being Concise and Remo	ving	Red	unda	ncy
-Avoiding Ambi	- ·				
UNIT - II			e Hrs		
	onents of a Research Paper- Abstracts- Building Hypothesis-Re			oble	m -
Highlight Findin	gs- Hedging and Criticizing, Paraphrasing and Plagiarism, Cauteriz	atio	n		
UNIT - III			e Hrs		
	ew of the Literature - Methodology - Analysis of the Data-Findi	ngs	- Dis	cussi	on-
Conclusions-Rec	ommendations.				
UNIT - IV		Le	cture	Hrs:	9
	for writing a Title, Abstract, and Introduction				
UNIT - V		Le	cture	Hrs:9	9
Appropriate lang	uage to formulate Methodology, incorporate Results, put forth Arg	gume	nts a	nd dı	raw
Conclusions					
Suggested Read					
	R (2006) Writing for Science, Yale University Press (available on	Goo	gle F	Books	3)
	urriculum of Engineering & Technology PG Courses [Volume-I]				
	006) How to Write and Publish a Scientific Paper, Cambridge Uni			ess	
3. Highmar Highmar	N (1998), Handbook of Writing for the Mathematical Sciences, S	IAM	•		
_	Vallwork, English for Writing Research Papers, Springer New Yor	k Do	ordre	cht	
TT-11-11-	rg London, 2011				

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	DICACTED MANACEMENT	L	T	P	C
21DAC101b	DISASTER MANAGEMENT	2	0	0	0
	Semester			I	
Course Objectives: 7	This course will enable students:				
• Learn to dem	constrate critical understanding of key concepts in	disas	ter risk	reduct	ion
and humanita	rian response.				
	luate disaster risk reduction and humanitarian response p	olicy a	and prac	tice fro	m
Multiple pers					
	derstandingofstandardsofhumanitarianresponseandpracti	calrele	vancein	specific	typ
	nd conflict situations		-1 1	:	1
•	erstandthestrengthsandweaknessesofdisastermanagement in different countries, particularly their home country or			_	
UNIT - I	in different countries, particularly their nome country of	the co	ununes	mey wc	1K II
Introduction:					
	ractorsandSignificance;DifferenceBetweenHazardandDis	aster·N	[aturalai	nd	
	Difference, Nature, Types and Magnitude.	usici,i (aturara	ı	
Disaster Prone Area					
	nes; Areas Prone to Floods and Droughts, Landslides ar	nd Ava	lanches	Areas	Pror
•	pastal Hazards with Special Reference to Tsunami; P				
Epidemics	asta Tazards with Special Reference to Tsanami, T	031 D	isastei	Discuse	5 an
UNIT - II					
	sasters and Hazards:				
-	Loss of Human and Animal Life, Destruction of Ec	ocueten	n Natu	ral Dic	acter
•	sms, Cyclones, Tsunamis, Floods, Droughts and Famines, La	•			
-	Nuclear Reactor Meltdown, Industrial Accidents, Oil Sli				
	cs, War and Conflicts.	cks and	ı opins,	Outbic	aks
UNIT - III	cs, war and conflicts.				
	ess and Management:				
-	itoring of Phenomena Triggering ADisasteror Haz	ard: F	Zvaluati	on of	Ricl
•	note Sensing, Data from Meteorological and Other				
* *	ommunity Preparedness.	Agener	cs, wice	iia ixc	port
UNIT - IV	Offiniality 1 reparedness.				
Risk Assessment Di	gagtan Digir.				
		l Dicc	ctor D:	olz City	intic:
-	ents, Disaster Risk Reduction, Global and Nationa				
-	sessment, Global Co-Operation in Risk Assessment and War	mng, F	eopie's	Partici	patic
III KISK ASSESSMENT.	Strategies for Survival.				

Disaster Mitigation:

UNIT - V

Meaning, Conceptand Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

Suggested Reading

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

- $1. \quad R. Nishith, Singh AK, ``Disaster Management in India: Perspectives, is sue sand strategies$
- 2. "'New Royal book Company..Sahni,PardeepEt.Al.(Eds.),"DisasterMitigationExperiencesAndReflections",PrenticeHa ll OfIndia, New Delhi.
- 3. GoelS.L.,DisasterAdministrationAndManagementTextAndCaseStudies",Deep&Deep Publication Pvt. Ltd., New Delhi

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

Course Code	SANSKRI	TFOR TECHNICAL KNOWLEDG	E	L	T	P	C
21DAC101c				2	0	0	0
		Sem	ester]	I	
Course Objecti	ves: This course	will enable students:					
To get a	working knowl	edge in illustrious Sanskrit, the scientif	ic lang	uage in	the wo	rld	
 Learnin 	g of Sanskrit to	mprove brain functioning					
 Learnin 	gofSanskrittodev	velopthelogicinmathematics,science&o	thersub	jects e	nhancin	g the	
memory power							
• The eng	ineering scholar	s equipped with Sanskrit will be able to	explo	re the l	nuge		
Knowle	dge from ancien	tliterature					
Course Outcon	nes (CO): Stude	nt will be able to					
 Underst 	anding basic Sar	nskrit language					
 Ancient 	Sanskrit literatu	re about science &technology can be u	ndersto	ood			
Being a	logical language	will help to develop logic in students					
UNIT - I							
Alphabets in S	anskrit,						
UNIT - II							
Past/Present/Fut	ure Tense, Simp	e Sentences					
UNIT - III							
Order, Introduct	ion of roots						
UNIT - IV							
Technical info	rmation about Sa	nskrit Literature					
UNIT - V							
Technical conc	epts of Engineer	ing-Electrical, Mechanical, Architectur	e, Math	nematic	s		
Suggested Read	ding						
1."Abhyaspust	akam" –Dr.Vis	hwas, Sanskrit-Bharti Publication, I	New D	elhi			
2."Teach You	rself Sanskri	t" Prathama Deeksha- VempatiK	utumb	shastr	i, Rash	triyaSa	nskrit
Sansthanam, N	lew Delhi Publ	cation					
3."India's Glor	rious Scientific	Tradition" Suresh Soni, Ocean book	s (P) I	Ltd.,Ne	ew Dell	hi	

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

AUDIT COURSE-II

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

		PEDAGOGY STUDIES	L	T	P	\mathbf{C}
21DAC201a		TEDITOGGI STEDIES	2	0	0	0
		Semester	•]	I	
Course Objective	es: This course	e will enable students:				
undertake	n by the DfID	eonthereviewtopictoinformprogrammedesign, other agencies and researchers. e gaps to guide the development.	andpolic	cy maki	ng	
Course Outcomes						
Students will be al						
countries?What is th	ne evidence or	resarebeingusedbyteachersinformalandinform the effectiveness of these pedagogical practical population of learners?			develop	oing
		on(curriculumandpracticum)andtheschoolcur ffective pedagogy?	riculuma	nd guid	ance	
UNIT - I		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
terminology	Theories	gy: Aims and rationale, Policy back ground oflearning, Curriculum, Teachereducation. Co				
terminology questions. Overvi	Theories iew of method	oflearning, Curriculum, Teachereducation. Colology and Searching.	onceptua	lframew	ork,Res	earc
terminology questions. Overvi UNIT - II Thematic overv	Theories iew of method	oflearning, Curriculum, Teachereducation. Co	onceptua	lframew	ork,Res	earcl
terminology questions. Overvi UNIT - II Thematic overv	Theories iew of method	oflearning, Curriculum, Teachereducation. Colology and Searching. gical practices are being used by teache	onceptua	lframew	ork,Res	
UNIT - II Thematic overver classrooms in development of included studinguidance material	Theories iew of method view: Pedago veloping coun effectivenesso ies. How can ls best suppor ective pedago	oflearning, Curriculum, Teachereducation. Colology and Searching. gical practices are being used by teacher tries. Curriculum, Teacher education. fpedagogical practices, Methodology for the indicate teacher education (curriculum and practicum teffective pedagogy? Theory of change. Strengical practices. Pedagogic theory and pedagogical practices.	epthstage) andthe	rmal are:quality	ork,Res	orma men n and
UNIT - II Thematic overver classrooms in development of included studinguidance material evidence for effect attitudes and believer of the control of the c	Theories iew of method view: Pedago veloping coun effectivenesso ies. How can ls best suppor ective pedago	oflearning, Curriculum, Teachereducation. Colology and Searching. gical practices are being used by teacher tries. Curriculum, Teacher education. fpedagogical practices, Methodology for the indicate teacher education (curriculum and practicum teffective pedagogy? Theory of change. Strengical practices. Pedagogic theory and pedagogical practices.	epthstage) andthe	rmal are:quality	ork,Res	orma
UNIT - II Thematic overver classrooms in development of included studinguidance materia evidence for effect attitudes and believed to the component of the com	Theories iew of method view: Pedago veloping counterffectivenesso ies. How can ls best supportective pedago efs and Pedago velopment: al head	oflearning, Curriculum, Teachereducation. Colology and Searching. gical practices are being used by teacher tries. Curriculum, Teacher education. fpedagogical practices, Methodology for the indicate teacher education (curriculum and practicum teffective pedagogy? Theory of change. Strengical practices. Pedagogic theory and pedagogical practices.	epthstage) and the ength and cogical a	rmal ar e:quality escho cu d nature pproach	ork,Res	men n and dy o chers

Suggested Reading

1. AckersJ, HardmanF(2001)ClassroominteractioninKenyanprimaryschools, Compare, 31 (2): 245-261.

Curriculum and assessment, Dissemination and research impact.

 $2. \quad A grawal M(2004) Curricular reformins chools: The importance of evaluation, Journal of the control of th$

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

- 3. Curriculum Studies, 36 (3): 361-379.
- 4. AkyeampongK(2003) Teacher training in Ghana does it count? Multi-site teachereducation research project (MUSTER) country report 1. London: DFID.
- 5. Akyeampong K, LussierK, PryorJ, Westbrook J (2013)Improving teaching and learning of basic maths and reading in Africa: Does teacherpreparation count?International Journal Educational Development, 33 (3): 272–282.
- 6. Alexander RJ(2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
 - Chavan M (2003)ReadIndia: A mass scale, rapid, 'learning to read'campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

Course Code	CTDI			L	T	P	C
21DAC201b	STRE	ESSMANAGEMENT BY YOGA	A	2	0	0	0
			Semester		I	I	
Course Objecti	ves: This course	will enable students:					
To achie	eve overall health	n of body and mind					
To over	come stres						
Course Outcon	es (CO): Studer	nt will be able to					
	healthy mind in efficiency	a healthy body thus improving so	ocial health	also			
UNIT - I							
Definitions of l	Eight parts of yog	g.(Ashtanga)	<u>, </u>				
UNIT - II		-					
Yam and Niyai	n.						
UNIT - III							
Do`sand Don't	sin life.						
		charyaand aparigrahaii) ,ishwarpranidhan					
UNIT - IV		•					
Asan and Prana	yam						
UNIT - V							
i)Variousyogpo	sesand theirbene	efitsformind &body					
ii)Regularizatio	onofbreathingtech	nniques and its effects-Types ofpra	anayam				
Suggested Read	ling		•				
		ng-Part-I'': Janardan SwamiYogal					
		Internal Nature" by Swami	Vivekananda	a, Adv	aita		
Ashrama (Public	cation Departmen	nt), Kolkata					

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

Course Code	PERSONALI	TY DEVELOPMENT THROU	JGHLIFE	L	T	P	C
21DAC201c	E	NLIGHTENMENTSKILLS		2	0	0	0
			Semester]	I	
Course Objecti	ives: This course	will enable students:					
To learn	n to achieve the hi	ighest goal happily					
To become	ome a person with	stable mind, pleasing personality	ty and determ	ninatior	l		
To awal	ken wisdom in stu	idents					
Course Outcon	nes (CO): Studen	t will be able to					
		d-Geetawillhelpthestudentindev	elopinghispe	rsonali	tyand a	chieve	
_	nest goal in life						
		ied Geetawilllead the nation and			•	perity	
	f Neetishatakam v	will help in developing versatile	personality of	of stude	nts		
UNIT - I	TT 1' .' 1 1						
	_	nent of personality					
	20,21,22(wisdom)						
	31,32(pride &her	01SM)					
	28,63,65(virtue)						
UNIT - II	****						
	_	nent of personality					
·	53,59(dont's)						
	73,75,78(do's)						
UNIT - III	. 1 1						
* *	ay to day work and						
	•	pter2-Verses41,47,48,					
•		,Chapter6-Verses5,13,17,23,35,					
	-Verses45,46,48.						
UNIT - IV							
	oasic knowledge.						
	-	pter2-Verses 56,62,68					
•	-Verses13,14,15,						
	of Rolemodel. S	hrimad Bhagwad Geeta:					
UNIT - V							
•	•	3-Verses36,37,42,					
*	Verses18,38,39						
	- Verses37,38,63						
Suggested Read			Ø 11: : :				
	avadGita''bySwan	niSwarupanandaAdvaitaAshram	(Publication)	Departr	nent),		
Kolkata	Thron Satalzam (N	(iti-sringar-vairagya) by P.Gop	ingth Dachte	ivoCon	olzrit		
Sansthanam,	·	nu-singai-vanagya) by P.Gopi	mani, Kasiili	1 y a Sall	SKIII		
Sansulanalli,	TIOW DOILII.						

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

OPEN ELECTIVE

Reference Books:

& Sons, 1996

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	WASTE TO ENERGY	L	T	P	C
21DOE301e		3	0	0	3
	Semester	III			
Course Objective					
• Introduce energy.	and explain energy from waste, classification and devices to	cor	ivert	was	te to
 To impart 	knowledge on biomass pyrolysis, gasification, combustion and co	nvei	sion	proce	ess.
	e on biogas properties ,bio energy system, biomass resources and ass energy programme in India.	thei	r clas	ssifica	ation
	s (CO): Student will be able to				
	about overview of Energy to waste and classification of waste.				
	e knowledge on bio mass pyrolysis, gasification, combustion and	conv	ercio	n nr	CASS
in detail.	e knowledge on the mass pyrorysis, gasineation, combustion and	COIIV	CISIC	ni pic	CCSS
	mowledge on properties of biogas, biomass resources and progr	ramr	nes 1	O CO	nvert
	nergy in India.	uiiii	iics (.0 00.	iivoit
UNIT - I	nergy in mara.	Le	cture	Hrs:	10
	nergy from Waste: Classification of waste as fuel - Agro base				
	MSW – Conversion devices – Incinerators, gasifiers, digestors	, -			,
UNIT - II	, , , , , , , , , , , , , , , , , , , ,	Le	cture	Hrs:	10
Biomass Pyrolysi	s: Pyrolysis – Types, slow fast – Manufacture of charcoal –	Met	hods	- Y	ields
	Manufacture of pyrolytic oils and gases, yields and applications.				
UNIT - III		Le	cture	Hrs:	12
Biomass Gasifica	tion: Gasifiers – Fixed bed system – Downdraft and updraft ga	sifie	rs –	Fluid	lized
bed gasifiers – De	sign, construction and operation – Gasifier burner arrangement for	r the	erma	l hea	ating
- Gasifier engin	e arrangement and electrical power - Equilibrium and ki	netic	con	sidera	ation
in gasifier operation	on				
UNIT - IV				Hrs:	
combustors, Type	tion: Biomass stoves – Improved chullahs, types, some exotic c s, inclined grate combustors, Fluidized bed combustors, Design ion of all the above biomass combustors.				
UNIT - V		Le	cture	Hrs:	10
	s of biogas (Calorific value and composition) - Biogas plar				
•	gy system - Design and constructional features - Biomass re			~.	
classification -					
Biomass convers	ion processes - Thermo chemical conversion - Direct comb	ustic	on -	bior	nass
	lysis and liquefaction - biochemical conversion - anaerobic dig				
1 1 101 .	Applications - Alcohol production from biomass - Bio die	esel	proc	luctio	n -
biogas Plants –	applications - Alcohol production from blomass - Blo div				
Urban waste to	energy conversion - Biomass energy programme in India.		•		
Urban waste to control Textbooks:	energy conversion - Biomass energy programme in India.				
Urban waste to control Textbooks:					

2. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley

1. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Online Learning Resources:

https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-ch13/https://www.youtube.com/watch?v=x2KmjbCvKTk

M.TECH, IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	COST MANAGEMENT OF ENGINEERING	L	T	P	C
21DOE301a	PROJECTS	3	0	0	3
	Semester			III	
Course Objectives:					
TD 1:					

- To explain cost concepts and objectives of costing system and cost management process
- To provide knowledge and explain Cost behaviour in relation to Volume and Profit and pricing decisions.
- To know the concepts of target costing, life cycle costing and activity based cost management in a project or business.
- To discuss on budget and budgetary control, type of budgets in a business to control costs
- To provide knowledge on project, types of projects, stages of project execution, types of project contracts and project cost control.

Course Outcomes (CO): Student will be able to

- Know the cost management process and types of costs
- Learn and apply different costing methods under different project contracts
- To understand relationship of Cost-Volume and Profit and pricing decisions.
- Prepare budgets and measurement of divisional performance.
- Acquires knowledge on various types of project contracts, stages to execute projects and controlling project cost..

UNIT - I Lecture Hrs: 10

Introduction and Overview of the Strategic Cost Management Process - Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

UNIT - II Lecture Hrs:12

Cost Behavior and Profit Planning: Marginal Costing- Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems; Pareto Analysis Just-in-time approach, Theory of constraints.; Divisional performance management: - Measurement of Divisional profitability - pricing decisions - transfer pricing.

UNIT - III Lecture Hrs:10

Target costing- Life Cycle Costing - Activity-Based Cost management:- Activity based costing-Value-Chain Analysis- Bench Marking; Balanced Score Card.

UNIT - IV Lecture Hrs: 10

Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT - V Lecture Hrs:12

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

Textbooks:

1. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

2. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher

Reference Books:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd

Online Learning Resources:

https://nptel.ac.in/courses/105/104/105104161/ https://nptel.ac.in/courses/112/102/112102106/

61

Reference Books:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN ELECTRICAL POWER SYSTEMS/POWER SYSTEMS

COMMON COURSE STRUCTURE & SYLLABI

Course Code	INTERNET OF THINGS& ITS APPLICATIONS	L	T	P	C
21DOE301i		3	0	0	3
	Semester	III			
Course Objectiv	es:				
 Introduce 	the fundamental concepts of IoT and physical computing				
 Expose th 	ne student to a variety of embedded boards and IoT Platforms				
• Create a l	pasic understanding of the communication protocols in IoT commu	nication	ıs.		
 Familiari 	ze the student with application program interfaces for IoT.				
 Enable st 	udents to create simple IoT applications.				
	s (CO): Student will be able to				
Choose th	ne sensors and actuators for an IoT application				
	otocols for a specific IoT application				
	e cloud platform and APIs for IoT applications				
	ent with embedded boards for creating IoT prototypes				
	solution for a given IoT application				
• Establish					
UNIT - I	a startap		Lecti	ıre Hrs	•
Overview of IoT:					
The Internet of T	hings: An Overview, The Flavor of the Internet of Things, The "	Internet	r" of "T	hings"	, Tł
	e Internet of Things, Enchanted Objects, Who is Making the Internet			O	
	s for Connected Devices: Calm and Ambient Technology, Pr			hinkin'	g fo
Connected Device	es, Affordances.				
Prototyping: Sket	ching, Familiarity, Costs Vs Ease of Prototyping, Prototypes and P	roducti	on, Ope	en sour	ce V
	ping into the community.				
UNIT - II			Lectu	ire Hrs	:
Embedded Device	es:				
	bedded Computing Basics, Arduino, Raspberry Pi, Mobile 1	phones	and ta	ablets,	Plu
	ys-on Internet of Things				
UNIT - III			Lectu	ire Hrs	:
Communication i					
	ications: An Overview, IP Addresses, MAC Addresses, TCP ar	d UDP	Ports,	Applic	catic
Layer Protocols					
Prototyping Onlin	*				
	ith an API, Writing a New API, Real-Time Reactions, Other Proto	cols Pro			
UNIT - IV				ire Hrs	
	A short history of business models, The business model canvas,	Who is	the bus	siness r	nod
	ling an Internet of Things startup, Lean Startups.	1			
	What are you producing, Designing kits, Designing printed circuit b	oards.	т .	т т	
UNIT - V				ire Hrs	
	ontinued: Manufacturing printed circuit boards, Mass-producing t	he case	and ot	her fix	ture
	ts, Scaling up software.				
	zing the Internet of Things, Privacy, Control, Environment, Solution	ons			
Textbooks:					

1.Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley Publications, 2012

M.TECH. IN ELECTRICAL POWER SYSTEMS / POWER SYSTEMS

- 1. HaiderRaad Fundamentals of IoT and Wearable Technology Design, Wiley Publications 2020.
- 2. KashishAraShakil,Samiya Khan, Internet of Things (IoT) Concepts and Applications,Springer Publications 2020.